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On the Use of E-1-Methoxymethoxybut-2-enyl(tri-n-butyl)stannane
as a threo-Selective, Homo-enolate Equivalent

Andrew J. Pratt and Eric J. Thomas*

The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, U.K.

(E)-1-Methoxymethoxybut-2-enyl(tri-n-butyl)stannane, readily available by addition of tri-n-butylstannyl-
lithium to crotonaldehyde, and protection of the alcohol so formed using chioromethyl methyl ether, reacts on
heating with aromatic and aliphatic aldehydes to give threo-4-hydroxy-3-methyl-cis-1,2-enol ethers,
hydrolysis and oxidation of which provides a stereoselective route to trans-4,5-disubstituted butyrolactones.

Recently there has been considerable interest in acyclic
stereochemical control.! One significant development in this
field has been the introduction of procedures for erythro-
and threo-selective aldol condensations, either directly using
stereoselectively generated (Z)- or (E)-enolate anions,® or
indirectly using crotyl metal derivatives,® including crotyl-
trialkylstannanes.*:®* Recent work has shown that under Lewis
acid (BF,.Et,0) catalysed conditions, both (E)- and (Z)-
crotyltrialkylstannanes (1) and (2) react rapidly with alde-
hydes to give erythro-adducts (4).* However an earlier report®
had suggested that the uncatalysed, thermal, addition of a
crotylstannane to an aldehyde is stereoselective, (E)-crotyl-
(trialkyl)stannanes (1) providing threo-adducts (3), and (Z£)-
crotyl(trialkyl)stannanes (2) providing erythro-adducts (4),
after hydrolysis.® This stereoselectivity parallels that of other
crotyl metal compounds, and is consistent with a 6-membered-
ring, chair-like, transition state. We here report that (E)-
1-methoxymethoxybut-2-enyl(tri-n-butyl)stannane (7) reacts
with both aromatic and aliphatic aldehydes, in the absence
of a Lewis acid catalyst, to give threo-4-hydroxy-3-methyl-
cis-1,2-enol ethers.

Tri-n-butylstannyl-lithium (5) is known to add to «,B3-
unsaturated aldehydes and ketones at either the carbonyl
carbon or the B-carbon depending upon steric hindrance.’
When crotonaldehyde was added at —78 °C to a solution of
tri-n-butylstannyl-lithium (5) in tetrahydrofuran (THF),
generated at 0 °C from lithium di-isopropylamide and tri-n-
butyltin hydride,” exclusive carbonyl attack occurred to give
the tri-n-butylstannyl alcohol (6). This unstable alcohol (6)
was not purified; instead it was immediately treated with
chloromethyl methyl ether and di-isopropylethylamine in
CH,Cl, to give (E)-1-methoxymethoxybut-2-enyl(tri-n-butyl)-
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stannane (7), 829%; overall from crotonaldehyde.t The crude
alkoxycrotylstannane (7) so obtained was sufficiently pure
for most practical purposes, but could be purified either by
flash chromatography on silica, or by column chromato-
graphy on basic alumina.

It was found that heating a solution of alkoxycrotyl-
stannane (7) and benzaldehyde in toluene under reflux for
90 h gave one major product, isolated after short column
chromatography in 799 yield, and identified as the threo-4-
hydroxy-3-methyl-cis-1,2-enol ether (8a).} No other isomers
of the threo-cis-enol ether (8a) were isolated, the one side-
product isolated in 19 yield being identified as ketone (13).
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Table 1.
Stannyl reaction®
Aldehyde % vyield  Hydrolysis—oxidation®
R 7/°C t/h of (8) % overall yield of (18)
Phe 115 90 79 89
Ph 140 11 70 —
PhCH=CH 140 11.5 60 72
p-NO,C¢H, 60 16 56(66)4 71
p-CIC;H, 100 36 76 70
Et 140 40 33e —
Pri 140 40 72 77
But 140 40 ) —
n-CgHy,q 140 36 47 95
n-CgH 48 140 19 66(89)n —

2 Two mol. equiv. of (7), neat, unless otherwise stated. » 3 M
aqueous HCI, THF, 1:1, 24 h, 20 °C; PCC, NaOAc, CH,Cl,,
12 h, 20°C. ¢ Using 1.2 equiv. of (7) in toluene as solvent.
4 Yield in parentheses allows for 149, recovered aldehyde.
¢ Plus 449, of adduct (16). f Plus 109 of adduct (14). € Using
5 mol. equiv. of aldehyde relative to stannane (7). * Yield in
parentheses allows for 26%, recovered stannane (7).

1 All new compounds were characterised by spectroscopic data,
and by analytical or accurate mass data whenever possible,

Figure 1

Subsequently it was found that this condensation reaction
could be carried out using 2 mol. equiv. of alkoxycrotyl-
stannane (7) as the reaction solvent, a 709 yield of product
(8a) being obtained after 11 h at 140 °C.

Aliphatic aldehydes were found to behave similarly. Thus
treatment of n-heptanal with 2 mol. equiv. of alkoxycrotyl-
stannane (7) at 140 °C for 36 h gave the threo-4-hydroxy-3-
methyl-cis-1,2-enol ether (8b) (47%). In this case a second
product was isolated (109 yield) and identified as enol ether
(14) on the basis of spectroscopic data. Only one isomer of
enol ether (14) was isolated; the geometry of its C(5)-C(6)
double-bond was not determined. Use of an excess of n-
heptanal gave an improved yield of the desired enol ether
(8b), e.g. using 5 mol. equiv. of n-heptanal, an 89 % yield of
(8b) was obtained, based on consumed stannane, after 19 h
at 140 °C (Table 1).

The other aldehydes used, together with reaction conditions
and yields of products, are shown in Table 1. The selective
formation of threo-cis-enol ethers was found to be quite
general, at least for simple aldehydes. For most of these
reactions, 2 equiv. of stannane (7) were used as reaction
solvent, the excess of stannane being removed at the end of
the reaction by partition between acetonitrile and light
petroleum.® Yields refer to chromatographed products. The
optimum temperature for the reaction was found to depend
upon aldehyde reactivity. Thus p-chlorobenzaldehyde gave a
76%; yield of product after 36 h at 100 °C, whereas p-nitro-
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benzaldehyde rcacted smoothly at 60 °C. Of the aliphatic
aldehydes studied, isobutyraldehyde gave a 729 yield of
product at 140 °C, but pivaldehyde was less reactive, only a
5% yield of product being obtained after 40 h at 140 °C,
presumably owing to steric hindrance to carbonyl attack.
Propanal gave two products, which were separated and
identified as the desired threo-cis-enol ether (15) (379%)
together with the analogous product (16) (449;) derived
from 2-methylpent-2-enal. This behaviour parallels that of
n-heptanal. It would seem that primary aliphatic aldehydes
undergo aldol condensation—-dehydration under the reaction
conditions, the aldol products then undergoing reaction with
crotylstannane (7). Only one isomer of product (16) was
obtained; in this case the C(5)-C(6) double-bond geometry
was assumed.

Structures were assigned to the threo-4-hydroxy-3-methyl-
cis-1,2-enol ethers on the basis of spectroscopic data and
chemical correlation with known compounds. In all cases
the 'H n.m.r. coupling constant between the vinylic protons
was 5 (=1) Hz, consistent with the cis-enol ether geometry
shown; trans-enol ethers normally have a coupling constant
between the vinylic protons of ca. 12 Hz.® The threo-con-
figuration was initially assigned by analogy with reactions
between aldehydes and other (E)-crotyl organometallics. It
was confirmed for the benzaldehyde and n-heptanal products
(8a) and (8b) by ozonolysis followed by oxidative work-up
and esterification with diazomethane to give the threo-methyl
esters (11a) and (11b). These were compared with authentic
samples prepared using the procedure developed by Heath-
cock.l® Thus treatment of benzaldehyde and n-heptanal with
the lithium (E)-enolate derived from 2,6-dimethylphenyl
propanoate gave mixtures of the threo- and erythro-aldol
products (9a, b) and (10a, b). threo: erythro = ca. 7: 1 for both
cases. Hydrolysis and diazomethane esterification of these
aldol products gave 7:1 mixtures of the threo- and erythro-
methyl esters (11a, b) and (12a, b). In both cases the major
threo-methyl ester was identical to the sample prepared from
the corresponding threo-cis-enol ether (8a, b), and the minor
erythro-methyl ester was clearly different. The methyl ester
(11a) in the benzaldehyde series is a known compound; our
spectroscopic data agreed with those published. The methyl
ester (11b) in the n-heptanal series is new; however its
2-H-3-H coupling constant of 6.6 Hz is characteristic of
threo-isomers, cf. erythro-isomers which have analogous
coupling constants of 2—4 Hz.!! The threo-configuration was
assigned to the other products by analogy.
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The stereoselective formation of threo-isomers in these
reactions is consistent with the 6-membered cyclic chair-like
transition state shown in Figure 1. The threo-configuration
of the product is a consequence of the (E)-geometry of the
crotylstannane, and a preference for the R-group of the
aldehyde to adopt an equatorial position. Of note is the
formation of the enol ether with exclusive cis-geometry. This
implies that the 1-methoxymethoxy-substituent adopted the
axial position shown in the transition state. There is some
precedent for this stereoselectivity.!? In our case, it may be
due to the bulky n-butyl groups on tin which would provide
a substantial gauche interaction if the methoxymethoxy-
moiety adopted an equatorial position. In the axial position
shown in Figure 1, the methoxymethoxy-substituent is
involved with only one 1,3-diaxial interaction.

Finally, the hydrolysis and oxidation of the threo-cis-enol
ethers was examined as a stereospecific route to trans-4,5-
disubstituted butyrolactones. It was found that hydrolysis of
the threo-cis-enol ethers (8) (3 M aqueous HCI-THF, 1:1;
24 h, 20 °C) gave lactols (17) which were oxidised by pyri-
dinium chlorochromate (PCC) (NaOAc buffer, CH,Cl,;
12 h, 20 °C) to give butyrolactones (18) in good overall yield
(Table 1). In the overall conversion of aldehydes into frans-
4 5-disubstituted butyrolactones (18), the alkoxycrotyl-
stannane (7) is being used as a threo-selective, homo-enolate
equivalent,
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